On the Discontinuous Galerkin Method for Friedrichs Systems in Graph Spaces

نویسنده

  • Max Jensen
چکیده

Solutions of Friedrichs systems are in general not of Sobolev regularity and may possess discontinuities along the characteristics of the differential operator. We state a setting in which the well-posedness of Friedrichs systems on polyhedral domains is ensured, while still allowing changes in the inertial type of the boundary. In this framework the discontinuous Galerkin method converges in the energy norm under hand p-refinement to the exact solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions

Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions Max Jensen Doctor of Philosophy Corpus Christi College Michaelmas Term 2004 This work is concerned with the numerical solution of Friedrichs systems by discontinuous Galerkin finite element methods (DGFEMs). Friedrichs systems are boundary value problems with symmetric, positive, linear first-order partial differenti...

متن کامل

Discontinuous Galerkin methods for Friedrichs’ systems∗

This work presents a unified analysis of Discontinuous Galerkin methods to approximate Friedrichs’ systems. A general set of boundary conditions is identified to guarantee existence and uniqueness of solutions to these systems. A formulation enforcing the boundary conditions weakly is proposed. This formulation is the starting point for the construction of Discontinuous Galerkin methods formula...

متن کامل

] 2011 - 04 Rellich - type Discrete Compactness for Some Discontinuous Galerkin FEM ∗

We deduce discrete compactness of Rellich type for some discontinuous Galerkin finite element methods (DGFEM) including hybrid ones, under fairly general settings on the triangulations and the finite element spaces. We make use of regularity of the solutions to an auxiliary second-order elliptic boundary value problem as well as the error estimates of the associated finite element solutions. Th...

متن کامل

Discontinuous Galerkin Methods for Friedrichs ’ Symmetric Systems

This paper presents a unified analysis of Discontinuous Galerkin methods to approximate Friedrichs' symmetric systems. An abstract set of conditions is identified at the continuous level to guarantee existence and uniqueness of the solution in a subspace of the graph of the differential operator. Then a general Discontinuous Galerkin method that weakly enforces boundary conditions and mildly pe...

متن کامل

Discontinuous Galerkin Methods for Friedrichs' Systems. Part III. Multifield Theories with Partial Coercivity

This paper is the third and last part of a work attempting to give a unified analysis of Discontinuous Galerkin methods. The purpose of this paper is to extend the framework that has been developed in part II for two-field Friedrichs’ systems associated with second-order PDE’s. We now consider two-field Friedrichs’ systems with partial L2-coercivity and three-field Friedrichs’ systems with an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005